

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Separation of Gold from Other Metals in Thiosulfate Solutions by Solvent Extraction

Jin Zhao^a; Zhichun Wu^b; Jiayong Chia-Yung Chen^b

^a Department of Chemical Engineering, Tsinghua University, Beijing, People's Republic of China ^b INSTITUTE OF CHEMICAL METALLURGY, CHINESE ACADEMY OF SCIENCES, BEIJING, PEOPLE'S REPUBLIC OF CHINA

Online publication date: 07 December 1999

To cite this Article Zhao, Jin , Wu, Zhichun and Chen, Jiayong Chia-Yung(1999) 'Separation of Gold from Other Metals in Thiosulfate Solutions by Solvent Extraction', *Separation Science and Technology*, 34: 10, 2061 – 2068

To link to this Article: DOI: 10.1081/SS-100100755

URL: <http://dx.doi.org/10.1081/SS-100100755>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Separation of Gold from Other Metals in Thiosulfate Solutions by Solvent Extraction

JIN ZHAO,* ZHICHUN WU, and JIAYONG (CHIA-YUNG) CHEN†

INSTITUTE OF CHEMICAL METALLURGY

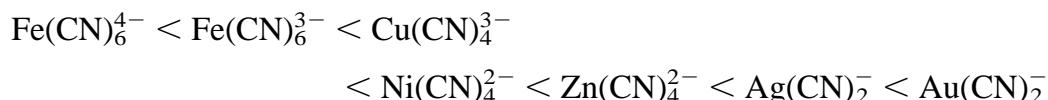
CHINESE ACADEMY OF SCIENCES

BEIJING 100080, PEOPLE'S REPUBLIC OF CHINA

ABSTRACT

The extraction of gold, silver, copper, zinc, and nickel present in thiosulfate solutions with or without the presence of ammonia was studied. Results show that neither a primary amine nor the mixed extractants of a primary amine with tributyl phosphate or trialkyl amine oxide can separate gold from other metals in the absence of ammonia in aqueous solutions. In the case of ammonium thiosulfate solutions, the percent extraction of gold is increased tremendously in comparison with other metals, and thus gold can be separated from them. The pH_{50} of gold extraction for a mixed solvent of primary amine with amine oxide is about 9.0, which is very close to the pH of the actual leaching solutions. By using the mixed solvent to extract gold in the solutions from leaching of gold-containing sulfide concentrate, the separation factors of Au to Ag and Au to Cu could reach as high as 15 and 1695, respectively, for a pH less than 8.

INTRODUCTION


The process of leaching with thiosulfate solutions, as one of several non-cyanide leaching processes of gold, has been studied and developed in recent years (1, 2). But there is not much work reported on the recovery of gold from thiosulfate solutions. Work has been started on this topic by cementation with zinc dust (3, 4) or iron powder, and adsorption on carbon, with a number of problems still to be solved (5, 6).

* Present address: Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.

† To whom correspondence should be addressed. FAX: +86 10 6256 1822.

Solvent extraction used in gold recovery offers higher capacity, better selectivity, and faster kinetics. With the increasing popularity of heap leaching of low-grade gold ores, there is scope for the development of solvents to treat these relatively clean, clarified liquors. Recovering extractants without using high pressure and high temperature shows a low cost, and extraction avoids the problems of fouling of medium and the losses of gold with attendant losses of fine grains which plague many activated carbon or resin systems.

The extraction of gold from cyanide solutions with neutral organophosphorus esters, primary amines, and their mixture as a solvent was studied by Miller and Caravaca, respectively (7-9). They found that with the addition of tributyl phosphate (TBP) the pH₅₀ of gold increases significantly, but the other cyanoanions result in much smaller increases, indicating that the selective extraction of gold from alkaline cyanide solution would be possible. The order of extraction of cyanoanions by the modified amine was found to be controlled by the ratio of electric charge to their diameter:

In our laboratory, primary, secondary, and tertiary amines have been studied for the extraction of gold from thiosulfate solutions. Organophosphorus esters and their mixtures with amines have also been tested. The experimental results show that only in alkaline solutions could gold be extracted with alkyl phosphorus esters (10). The extent of gold extraction using amines or their mixtures with alkyl phosphorus esters from thiosulfate solutions both show the order as primary > secondary > tertiary (11, 12). The effect of the amine oxide on the enhancement of gold extraction is stronger than that of phosphorus oxide (13).

In order to investigate the possibility of separating gold from leaching solutions, the extraction of silver, copper, zinc, and nickel was studied. The present paper reports our experimental results on the separation of gold from other metals present in ammoniacal thiosulfate solutions.

EXPERIMENTAL

The primary amine N₁₉₂₃ with the formula RR'CHNH₂ (with a total of 19-23 carbon atoms) was supplied by the Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai. Trialkyl amine oxide (TRAO) was prepared by oxidizing the tertiary amine. TBP and *n*-octane were chemical pure. The other reagents, AgNO₃, CuSO₄·5H₂O, ZnSO₄·7H₂O, NiSO₄·6H₂O, were of analytical grade.

Metallic gold was dissolved in aqua regia, and the other four metal solutions were prepared. The equilibrium distribution of metals between the aqueous and organic phases was determined by mixing the two phases using a magnetic stirrer. The pH was adjusted by addition of a very small volume of dilute H_2SO_4 or $NaOH$ solution under agitation to prevent precipitation of elemental sulfur. An equal amount of the organic phase was added to maintain a fixed phase ratio of 1:1. When equilibrium was reached, stirring was stopped. The metal content in the aqueous phase was determined using a Perkin-Elmer 4000 Atomic Absorption Spectrophotometer.

RESULTS AND DISCUSSION

Extraction of Au, Ag, Cu, Zn, and Ni with N_{1923}

Figure 1 shows the extraction of Au, Ag, Cu, Zn, and Ni with 0.5 M N_{1923} in *n*-octane from 0.8 M $Na_2S_2O_3$ solutions when these metals exist simultaneously in the thiosulfate solutions. It can be seen that the extraction is very intricate and the separation of gold from other metals is difficult.

During the process of leaching gold with the thiosulfate solutions, aqueous ammonia solution is always added to catalyze the leaching process and to keep the solutions alkaline in order to stabilize the thiosulfate ions. So the separation of gold by solvent extraction from the thiosulfate solutions should be car-

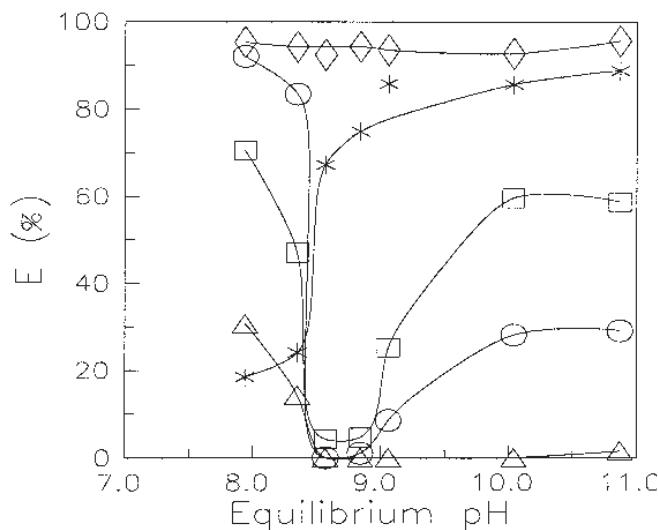


FIG. 1 Extraction of Au, Ag, Cu, Zn, and Ni with 0.5 M N_{1923} in *n*-octane from 0.8 M $Na_2S_2O_3$ solution versus equilibrium pH. Ratio of organic to aqueous phase (O/A) = 1, 20°C, 10 minutes.
(○) 0.20 mM Au, (□) 0.24 mM Ag, (△) 14.98 mM Cu, (◊) 0.20 mM Zn, (*) 0.21 mM Ni.

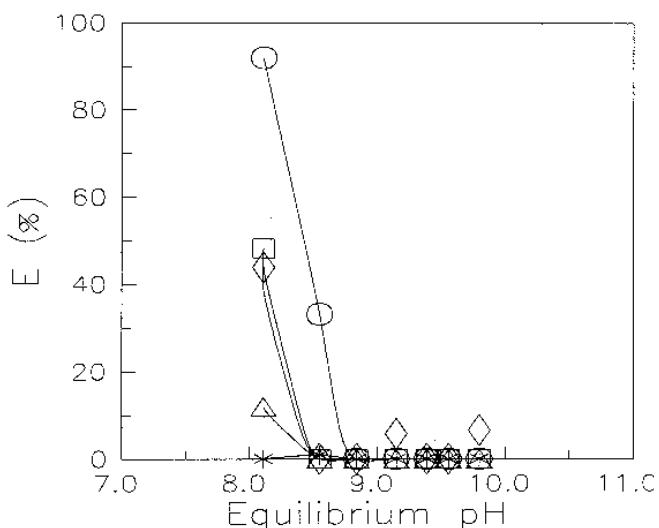


FIG. 2 Extraction of Au, Ag, Cu, Zn, and Ni with 0.5 M N_{1923} in *n*-octane from 0.8 M $(NH_4)_2S_2O_3$ solution versus equilibrium pH. O/A = 1, 20°C, 10 minutes. (○) 0.20 mM Au, (□) 0.24 mM Ag, (△) 14.98 mM Cu, (◊) 0.20 mM Zn, (*) 0.21 mM Ni.

ried out in the presence of ammonia. The extraction of gold, silver, copper, zinc, and nickel from 0.8 M $(NH_4)_2S_2O_3$ solution with 0.5 M N_{1923} in *n*-octane was carried out, and the results are shown in Fig. 2. It can be seen that the extraction is very different from the results of extraction in the absence of ammonia. The percent extraction of gold is much higher than the extraction of the other metals, and the order is Au > Ag ~ Zn > Cu > Ni.

Extraction of Au, Ag, Cu, Zn, and Ni with Mixed Solvent

In our previous work it was found that the addition of neutral phosphorus reagents to the primary amine increases the extraction of gold, and in the case of ammonium thiosulfate solutions the mixed solvent gives even better extraction results in comparison with solutions containing sodium instead. It has also been indicated that amine oxide has a stronger synergistic effect on the extraction of gold than do neutral phosphorus reagents.

The results of the extraction with the mixture of 0.5 M N_{1923} and 0.6 M TBP in *n*-octane from 0.8 M $(NH_4)_2S_2O_3$ solution are shown in Fig. 3. It can be seen that the extraction of gold increases with the addition of TBP, as seen from the slight shift of the extraction curve to a higher pH value, while the extraction of other metals is slightly depressed.

The extraction was carried out using an organic phase of 0.5 M N_{1923} and 0.15 M TRAO in *n*-octane and an aqueous phase of 0.8 M $(NH_4)_2S_2O_3$ solu-

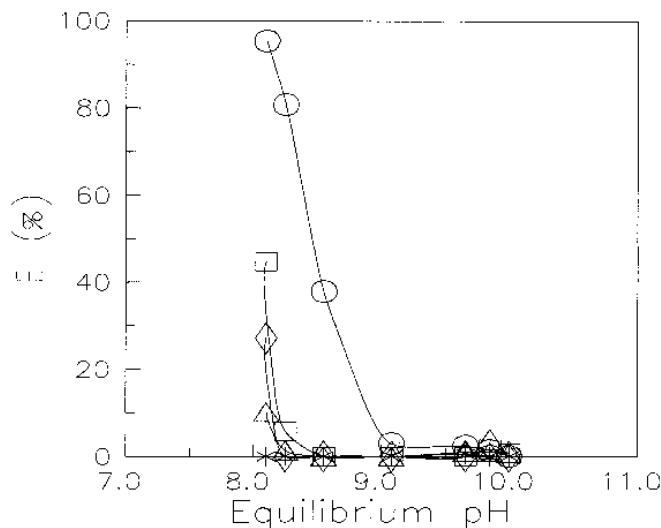


FIG. 3 Extraction of Au, Ag, Cu, Zn, and Ni with 0.5 M N_{1923} and 0.6 M TBP in *n*-octane from 0.8 M $(NH_4)_2S_2O_3$ solution versus equilibrium pH. O/A = 1, 20°C, 10 minutes. (○) 0.20 mM Au, (□) 0.24 mM Ag, (△) 14.97 mM Cu, (◊) 0.20 mM Zn, (*) 0.21 mM Ni.

tion. The results obtained are shown in Fig. 4. It can be seen that the extraction curves shift to the right, especially for gold, which indicates the gold can be separated from the coexisting other metals in thiosulfate solutions by the addition of TRAO to N_{1923} .

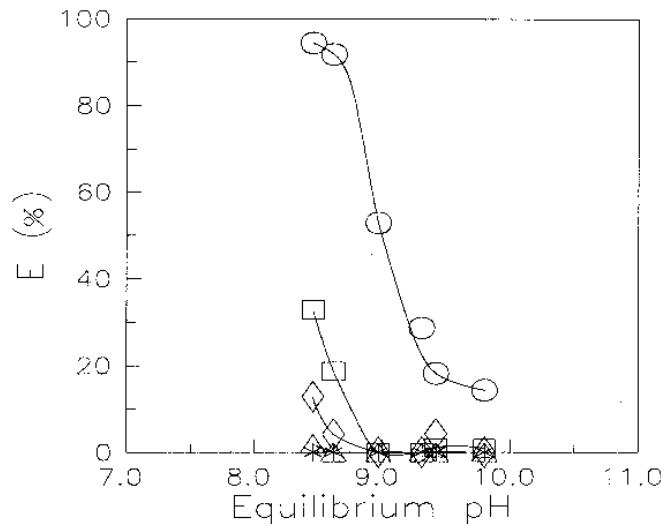


FIG. 4 Extraction of Au, Ag, Cu, Zn, and Ni with 0.5 M N_{1923} and 0.15 M TRAO in *n*-octane from 0.8 M $(NH_4)_2S_2O_3$ solution versus equilibrium pH. O/A = 1, 20°C, 10 minutes. (○) 0.20 mM Au, (□) 0.24 mM Ag, (△) 14.98 mM Cu, (◊) 0.20 mM Zn, (*) 0.21 mM Ni.

TABLE 1
pH₅₀ for Gold Extraction from 0.8 M (NH₄)₂S₂O₃ Solutions

0.5 M N ₁₉₂₃	0.5 M N ₁₉₂₃ and 0.6 M TBP	0.5 M N ₁₉₂₃ and 0.15 M TRAO
8.42	8.47	9.01

Table 1 illustrates the pH₅₀ values of the gold extraction studied above. For the mixed solvent of primary amine with amine oxide, the pH₅₀ is about 9.0, which is very close to the pH of the actual leaching solutions.

Extraction with the Real Leaching Solutions

Aqueous ammonia solution is always added when leaching gold-containing ores with thiosulfate solutions to form a copper–ammonia complex as the catalyst for the process. The extractions of Au, Ag, and Cu from the real leaching solutions with 0.5 M N₁₉₂₃ in kerosene and with the mixed solvent of 0.5 M N₁₉₂₃ and 0.15 M TRAO in kerosene were carried out, and the results are shown in Fig. 5. The concentrations of metals in the leaching solution were Au 10.66 mg/L, Ag 5.59 mg/L, and Cu 0.11%. The solution was obtained by leaching gold-containing sulfide concentrate ores from Zhaoyuan, Guang-

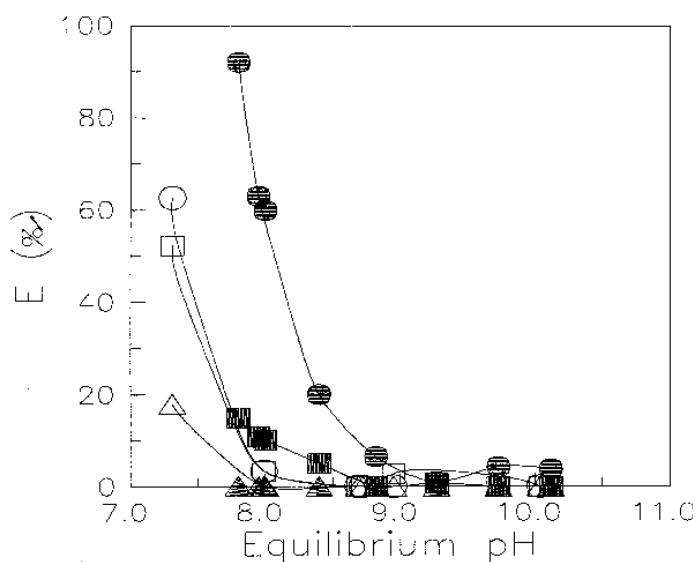


FIG. 5 Extraction of Au, Ag, and Cu from the thiosulfate solutions obtained by leaching gold-containing sulfide concentrate versus equilibrium pH. O/A = 1, 20°C, 10 minutes. (○ ●) Au, (□ ■) Ag, (△ ▲) Cu. Open symbols: 0.5 M N₁₉₂₃ in kerosene. Filled symbols: 0.5 M N₁₉₂₃ and 0.15 M TRAO in kerosene.

TABLE 2

Separation Factors of Au to Ag and Au to Cu for Extraction from the Solutions by Leaching of Gold-Containing Concentrate

Extractant	pH	$\alpha_{\text{Au/Ag}}$	$\alpha_{\text{Au/Cu}}$
0.5 M N_{1923} In kerosene	7.8 8.0	1.21 1.03	4.61 35
0.5 M N_{1923} and 0.15 M TRAO In kerosene	7.8 8.0	65 15	11,500 1,695

dong Province, and the metals contents in the ores were Au 54.6 g/t, Ag 28.0 g/t, and Cu 4.41%. The leaching process with 0.8 M $\text{Na}_2\text{S}_2\text{O}_3$ and 2.0 M $\text{NH}_3 \cdot \text{H}_2\text{O}$ was carried out at 50°C for 3 hours with no added copper.

The separation factors of Au to Ag and Au to Cu for pH 7.8 and 8.0 have been calculated and are listed in Table 2. It can be seen that when this mixed extractant is used for the extraction of gold from leaching solutions of gold-containing sulfide ores, the separation factors of Au to Ag and Au to Cu can reach as high as 15 and 1695 for a pH less than 8, respectively. Gold can be separated from other metals in thiosulfate solutions by the adjustment of the aqueous pH.

Although the results of extraction using the primary amine mixed with TBP are not as good as those with TRAO, it is possible that TBP will be favored for the separation of gold in the real leaching solution because TBP is in industrial production, is cheap, and convenient to use. TRAO is made from the oxidation of a tertiary amine. If its production cost were low, it might be feasible for a mixture of amine–amine oxide to be used to separate gold from thiosulfate solutions by leaching the gold-containing sulfide ores. This new mixed solvent extraction system is worthy of further research and development work.

CONCLUSIONS

The percent extraction of gold is increased tremendously in ammoniacal thiosulfate solutions in comparison with other metals by the addition of TBP or amine oxide in primary amine N_{1923} . The pH₅₀ of gold extraction for the mixed solvent of N_{1923} with TRAO is about 9.0. When this mixed extractant is used for extraction from the leaching of a gold-containing sulfide concentrate, the separation factors of Au to Ag and Au to Cu could reach as high as 15 and 1695 for a pH lower than 8, respectively. Thus gold can be separated from other metals.

ACKNOWLEDGMENT

The authors thank the National Natural Science Foundation of China for its financial support of this work.

REFERENCES

1. G. Zhu, Ph.D. Thesis, Institute of Chemical Metallurgy, Chinese Academy of Sciences, Beijing (1993).
2. R. Y. Wan, K. M. Levier, and R. B. Clayton, US Patent 5,354,359 (October 11, 1994).
3. R. M. Berezowsky, V. B. Sefton, and L. S. Gormely, US Patent 4,070,182 (January 24, 1978).
4. B. J. Kerley Jr., US Patent 4,369,061 (January 18, 1983).
5. J. Hu and Q. Gong, *Eng. Chem. Metall.*, 10(2), 45 (1989) (in Chinese with English abstract).
6. A. R. Marchbank, K. G. Thomas, D. Dreisinger, and C. Fleming, US Patent 5,536,297 (July 16, 1996).
7. C. Caravaca, *Hydrometallurgy*, 35, 27 (1994).
8. F. J. Alguacil, A. Hernandez, and A. Luis, *Ibid.*, 24, 157 (1990).
9. J. D. Miller and M. B. Mooiman, *Sep. Sci. Technol.*, 19(11&12), 895 (1984-85).
10. J. Zhao, Z. Wu, and J. Chen, "Extraction of Gold from Thiosulfate Solutions with Alkyl Phosphorus Esters," *Hydrometallurgy*, 46, 363 (1997).
11. J. Zhao, Z. Wu, and J. Chen, "Solvent Extraction of Gold in Thiosulfate Solutions with Amines," *Solv. Extr. Ion Exch.*, 16(2), 527 (1998).
12. J. Zhao, Z. Wu, and J. Chen, "Extraction of Gold from Thiosulfate Solutions Using Amine Mixed with Neutral Donor Reagents," *Hydrometallurgy*, 48, 133 (1998).
13. J. Zhao, Z. Wu, and J. Chen, "Gold Extraction from Thiosulfate Solutions Using Mixed Amines," *Solv. Extr. Ion Exch.*, 16(6), 1407 (1998).

Received by editor October 21, 1997

Revision received March 1998

Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/Reprints Here" link below and follow the instructions. Visit the [U.S. Copyright Office](#) for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on [Fair Use in the Classroom](#).

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our [Website User Agreement](#) for more details.

Order now!

Reprints of this article can also be ordered at
<http://www.dekker.com/servlet/product/DOI/101081SS100100755>